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0. Paris

1. Pairs
ordered pairs (z,y) € V x V = V% |[V?| = |V|?

unordered pairs {x,y} € ()
(more general: (V) :={U cV | |Ul=k}c2"; (V)= (", 2" =2
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E C (%) is called an association (on V), G = (V, E) is a (simple) graph
An association F is transitive, iff V {x,y, 2z} € (‘g) : {z, 2} {y, 2} € E= {z,y} € E.
A transitive association is called an equivalence (on V).

x and y are equivalent (x = y) if either z = y or {x,y} € E.

[z] :={y € V | x = y} is the equiset (equivalence class) of z in V w.r.t. E.
Example 1.V =7, FE = {{m,n} e@)|m-n> 0}; equisets —N, {0}, N.
Example 2. Let £ := {{x,y} e (%) | 3»,y — walk in G} > E; E is transitive.

G = (V, E) is called complete, iff £ = (‘2/) connected, iff E = (‘2/)

G complete < G connected and E = E.

([z]z, Ey) with B, = {{y,2} € E | y,z € [z]3}, is called a component of G.

Every component of a graph G is connected. If V' # (), then G is connected, iff |V/E~I| =1.

FE transitive < every component of G is complete .



2. The Chinese Rings (Le Baguenaudier, Meiena)

THE PUZZLE MUSEUM  © 2006 JAMES DALGETY,
http:/puzzlemuseum.com Hordern-Dalgety Collection

cm, ol &. .
Chinese rings—jiu lian huan (trad., before 1500)

Modelling by state graphs
Chinese rings graph R" (n € Ny rings) (w® :=10...0 € [2]; k € Ny)

V(R = 25, B(R") = { {s000 Y, 51wV} | r € [n]}

no~ po oo o o o o o o | —
R Pon 000 001 o011 010 110 111 101 100 3

d(0",w™) = g(0") = diam(R") = 2" — 1 =: M,, (Mersenne sequence)



For ¢, :== d(0",1") we have ¢, + ¢,,_1 = M, (Lichtenberg sequence, 1769)
0=0,1,2,5,10,21,42,85, ... = 0y, 15, 105, 1015, 1010, 101015, 1010105, 10101015, . . .

Algorithm. To get from 1" to 0", make alternating moves of ring 1 and another ring,

starting with ring 1, iff n is odd; in particular, g = 341.
What is d(s) := d(0", s) (the Gros weight) for general s € [2](}7?

Gros code automaton A B

dr_1 =d, Vs, > d= [0, ok = sk

Sierpinski graphs with base p > 2 and exponent n € Ny:  V (Sg) = |plt,

B (5;) = { {sis" " 256"} | {i,5} € (), d € ]

So R" = S;Z v(R") = %2”} based on the fundamental relation M,, mod 3 = n mod 2.



The inverse is given by the Gray code.

R3 000 001 011 010 110 111 101 100
*——0 oo o0 o0 °

Gros l T Gray

3 oo o o 0 0 0 ©
SQ 000 001 010 OI1 100 101 110 111

Gray code automaton A B

s, =d,Vd,_q o=d

Starting in state 0°°, the ring moved in step k = 2" }(2x — 1) is gy = r; kK € N.

This is the Gros sequence
g=1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1, ...

It is the greedy (strongly) square-free sequence over N.



The sequence of ups (1) and downs (0) of the rings is the paper-folding

sequence ¢ =1,1,0,1,1,0,0,1,1,1,0,0,1,0,0, .. ..
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Let g := gmod 2; then 1 — G period doubling sequence, > g Thue-Morse sequence.
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3. The Tower of Hanoi

(©A.M.Hinz, 1986

La Tour d’Hanoi (Edouard Lucas, 1883)



3.0. The PO0-Task (perfect to perfect)

Legal distributions of discs from [n] on pegs from [3] are coded by s € [3]f.
The PO-task is to get from 0" to 2" (on a shortest possible path).
Proposition 0 The PO-task can be achieved in M, moves.

Proof by induction. The statement is clearly true for n = 0. To transfer a tower of n+ 1 discs from peg 0
to peg 2, displace the n-tower of smaller discs to peg 1 in M, moves (by induction assumption), then
disc n + 1 to peg 2 in 1 move and finally all other discs on top of it in another M,, moves. Altogether

2M,, +1 = M,,+1 moves have been performed. O

Is this recursive algorithm or was there a hidden assumption in the

previous proof? and Yes!



Why does disc n 4+ 1 move directly to the goal peg?

Theorem

Proof by induction. The statement is clearly true for n = 0. Before the first move of disc n + 1 in any
solution, a tower of n discs has to be transferred from the source peg to another one, which takes at least
M,, moves by induction assumption. After the last move of disc n+ 1 again an n-tower changes position
from some peg to the goal peg, consuming another M,, individual disc moves. Since disc n + 1 has to
move at least once, the solution needs at least M, steps. Therefore, by Proposition 0, first and last
move of disc n + 1 coincide, and uniqueness of the optimal solution follows from induction assumption

as well. n

Is there an efficient algorithm for the optimal solution?

Is there a human algorithm for the optimal solution?



The optimal solution n=4

Observation (Raoul Olive): disc 1 moves cyclically
Moreover, the disc moved in move number k is g

Hence, disc d moves for the first time in step 2471

Half-way solution
The only move of the largest disc

Call bottom of peg ¢ “discn+1+1i";

then all “discs” on a peg are of alternating parity.

\H
S3lE1 318

All this leads to iterative algorithms.

What happens, if we introduce a “disc 0"7?



“Disc 0" acts like a “thimble” designating the idle peg

idle peg automaton

n
yields the idle peg of move k£ = Z kg - 291
d=1
this, together with the divine rule defines the move completely.

Olive's sequence o: start in 0°° and let the idle peg follow the sequence (012)>°. Then
0=1,2,0,1,2,0,1,2,0,1,2,0,1,... = (g9 mod 2,/ mod 3) ,

where (0,4) = and (1,4) = 1.

The Olive sequence is square-free and automatic (Allouche & al., 1989ff).



parallel algorithm or spreadsheet solution

d\k|0|1]|2|3|4|5|6|7|8|9|10|11|12|13|14]|15
1 o0/j1/1/2(2/0/{0|1(1/2|2 0, 0|1|1]2
2 0/0/2/2(2/2|1|1(1/1{0| 0, 0|0]2]2
3 o/0/0/0f1/1|1|1 /11|11, 2|2]2]2
4 0/0/0/0f0j0|0|02|2|2 |2 2|2]|2]2

Another curiosity: The number of distinct distributions of discs on the intermediate peg

during execution of the optimal solution for n € Ny discs is F}, 1.

We can also solve the inverse problem. But can we trust the Brahmins?
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3.1. The P1-Task (regular to perfect)
Does s € [3]§ lie on the optimal 1", 2"-path?

Enter s,,,..., sy into P1 automaton, @starting in state O:
iff state changes on every input, the answer is Yes!

2 1

() ——C)

Entering 7 in state j of the automaton yields ¢ 2 j according to the

Cayley table (Note that 14 j =3 —i — j, if i # j.)
A10)1]2 For the PI-task [3]; © s — j", the P1 automaton gives
0j0]2)1 — the disc to be moved in the optimal first move
L2110 — the idle peg s; 4 --- 4 s, 2 7 in that move and
211102 — the length d(s, ;™) of the (only) optimal solution.

Every s € [3]j is uniquely determined by the two values d(s,i"), d(s, j"),

and d(s, ") + d(s, j7) + d(s, (i & §)) = 2M,, if i # j.



More challenging tasks: sorting gold and silver!

This corresponds to a P1-task s — 1™ with s; = 2(dmod 2) for d € [n].

Needs ETJ =0,1,2,5,11,22,45,91,182, ... moves.

So far, everything can be proved by induction.
But what, for instance, if we want to switch gold and silver towers?

This is a P2-task [3]j > s — t € [3]} (with t; = 2(1 — (dmod 2))).

Surprise: there may be two optimal solutions (01 — 10) and
it might even be to move the largest disc twice (011 — 100)!



3.2. Hanoi Graphs and the P2-Task (regular to regular)

000

Hanoi graphs H3

00

02 01

f 12 21
(]

! 2 u 10 20 2 111 112 102 100 200 201 221 222
n=0 n=1 n=2 n=23

Metric properties: d(0",2") = ¢(0") = diam(HY) = M,,.

On a shortest path the largest discs moves at most twice;

there are up to two shortest paths differing by the number of LDMs.

(Hinz, 1989) O. :=1(5+V17)

d(Hp) = 82" — 3+ 5 2+ FVIT) (5" = 3" + 55 2 = HVIT)(




(Hinz and Schief, 1990) Average distance on the Sierpiriski triangle

o ©A.M.Hinz, 2001
Floor decoration in San Clemente, Rome

W. Sierpinski, C. R. Acad. Sci. 1915-02-01 (présenté par E. Picard)



Hanoi graphs with base p > 3 and exponentn € Ny: V' (Hg) = |plt,
B (Hy) = { {si5,555} | {i,5} € (W), d e nl, 5 € (oo \ G5, )" |

For S): P2 automata by D. Romik (p = 3, 2006),
A. M. Hinz and C. Holz auf der Heide (general p, 2014)



{i, 3.k} =3

e [0 D




{i,g,k} =3

(k) {9, b5} = 4

g, k. 63| = 3 = [{i, k,m}|




d(s, j") = >0 _(sq # j) - 2471 unique solution
d(is, jt) = d(s,j") + 1 +d(¢t, ") A, D; unique solution, 1 LDM
or =d(s, k") +1+2"+d(t,k™)  C, E; unique solution, 2 LDMs

or

In S): d(0%, (p—1)") = e(0") = diam(S}) = M,

B: 2 solutions

- n n 1 ~ ~ Q1
But: H)) % S) forp>3andn>1(H, = K,=5)

There may be up to p — 1 LDMs (necessary) in H'! (022333 — 300101 in HY)



4. The Reve's Puzzle

H,) has more complex metric properties: for n € N we know
2n —1=d (0" (p—1)") <e(0") <diam(H) <2" -1

Case p = 4: The Reve's Puzzle Dudeney 1902-8

Hanoi graph H}

Frame-Stewart numbers are defined as
FS)=0,VneN: FS} =min{2FS? + M,_,, | m € [n]o}

Theorem Vv e Ny, z € [v+1]p: FSH™ =w—1+z)2"+1



Conjecture (Frame and Stewart, 1941) d(0",3") = F'S} in H}

Dunkel's “Lemma”. After (v + ) 2”1 moves at most A, + z discs have left peg 0.

(Korf and Felner, 2007) numerical confirmation of FSC for n < 30

Korf's Phenomenon: ex(n) = ¢(0") — d(0",3"), EX(n) = diam(H}) — d(0", 3")

n 12 (13| 14 | 15 | 16 | 17 | 18 | 19 | 20 21 22

d(0™,3™) || 81|97 | 113 | 129 | 161 | 193 | 225 | 257 | 289 | 321 | 385
e(0™) 81|97 | 113|130 | 161 | 193 | 225 | 257 | 294 | 341 | 394
ex(n) oj0] O 1 0 0 0 0 5 20 9

EX(n) |00 0| 1 [>0]>0/>0[>0|>5[>20]|>9

Conjecture (Korf and Felner, 2007) For any n > 20, ex(n) > 0.

Conjecture (Hinz et al., 2013) The function EX is (eventually strictly) monotone

increasing.



g\v|0 1 2 3 4 5 6 7 8 9 10
0o jo1 1 1 1 1 1 1 1 1 1
1 /01 2 3 4 5 6 7 8 9 10
2 |01 3 6 10 15 21 28 36 45 55
3 /01 4 10 20 35 56 8 120 165 220
4 |0 1 5 15 35 70 126 210 330 495 715
5 |0 1 6 21 56 126 252 462 792 1287 2002
6 |0 1 7 28 84 210 462 924 1716 3003 5005
7 [0 1 8 36 120 330 792 1716 3432 6435 11440
8 |0 1 9O 45 165 495 1287 3003 6435 12870 24310
9 |0 1 10 55 220 715 2002 5005 11440 24310 48620

q+u—1)

The hypertetrahedral array A, = ( ¢

Pascal's Arithmetical triangle



qg\v |0 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1
1 -1 1 2 3 4 5 6 7 8 9
2 1 2 4 7 11 16 22 29 37 46
3 |-1 2 6 13 24 40 62 91 128 174
4 1 3 9 22 46 86 148 239 367 541
5 | -1 3 12 34 80 166 314 553 920 1461
6 1 4 16 50 130 296 610 1163 2083 3544
7 -1 4 20 70 200 496 1106 2269 4352 7896
8 1 5 25 95 205 791 1897 4166 8518 16414
9 |-1 5 30 125 420 1211 3108 7274 15792 32206

The P-array F,,

2Pq,1/+1 =

P

q,v + Aq7l/+1



¢g\v|0 1 2 3 4 5 6 7 8

o |01 1 1 1 1 1 1 1

1 |01 3 7 15 31 63 127 255
2 |0 1 5 17 49 129 321 769 1793
3 |0 1 7 31 111 351 1023 2815 7423
4 |0 1 9 49 209 769 2561 7937 23297
5 |0 1 11 71 351 1471 5503 18943 61183
6 |0 1 13 97 545 2561 10625 40193 141569
7 |0 1 15 127 799 4159 18943 78079 297727

Dudeney’s array a,,

Qg0 = 07 Ao,y = AO,V? Qg+1,v+1 = 2aq+1,u + Qg .v+1 -

h
Dudeney's algorithm uses ~ Aj 11 =1+ ZA‘W'

q=1

= doi (050, 1800) < ay = Py, - 27 + (1)



Fundamental relations

Apy—1

\Y%
an, = E Vhk
k=0

where V), , = max {p € Ny | Ay, < k} is the hypertetrahedral root of k, for which

Vo € [Ap—1u+1)o: VA, 40 =V.

h\n|0 1 2 3 4 5 6 7 8 9
1 0 1 3 7 15 31 63 127 255 511
2 01 3 5 9 13 17 25 33 41
3 01 35 7 11 15 19 23 27
4 01 35 7 9 13 17 21 25

Ah +x
Ve < Ap_1p41: FSy  =ap,+2-2°



Altogether we know

n—1 n

n Q" 1 H

2+h = E 2Vhk =: @p_1(n), FSyyy = §Z 2Vt =: By_y(n).
k=0 k=1

To prove the

Frame-Stewart Conjecture ~ d,(0",1") = F'S},

it suffices to show that

Vi e [h]n I d2+h(0n,t) > ah_l(n) .

Note that for p = 3, i.e. h =1, we have t = 1" and ®y(n) = 2" — 1.

Thierry Bousch has published an attempt at p =4, i.e. h = 2, in 2014.



Andreas M. Hinz

FU rther reading: Sandi Klavzar
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