La Tour d'Hanoï : from 2 to $3 \dots 1$

Andreas M. Hinz

Ludwig-Maximilians-Universität München & Universa v Mariboru

CombinatoireS

École d'Été Paris, 2015–06–30

0. Paris

1. Pairs

ordered pairs $(x, y) \in V \times V =: V^2$; $|V^2| = |V|^2$ unordered pairs $\{x, y\} \in {V \choose 2}$ (more general: ${V \choose k} := \{U \subset V \mid |U| = k\} \subset 2^V$; $|{V \choose k}| = {|V| \choose k}, |2^V| = 2^{|V|}$)

 1 CA.M.Hinz 2015

 $E \subset {V \choose 2}$ is called an *association* (on V), G = (V, E) is a (simple) graph An association E is transitive, iff $\forall \{x, y, z\} \in {V \choose 3}$: $\{x, z\}, \{y, z\} \in E \Rightarrow \{x, y\} \in E$. A transitive association is called an *equivalence* (on V). x and y are equivalent $(x \approx y)$ if either x = y or $\{x, y\} \in E$. $[x] := \{y \in V \mid x \approx y\}$ is the equiset (equivalence class) of x in V w.r.t. E. **Example 1.** $V = \mathbb{Z}$, $E = \left\{ \{m, n\} \in {\mathbb{Z} \choose 2} \mid m \cdot n > 0 \right\}$; equisets $-\mathbb{N}$, $\{0\}$, \mathbb{N} . **Example 2.** Let $\widetilde{E} := \left\{ \{x, y\} \in {V \choose 2} \mid \exists x, y - \text{walk in } G \right\} \supset E$; \widetilde{E} is transitive. G = (V, E) is called *complete*, iff $E = {V \choose 2}$; *connected*, iff $\widetilde{E} = {V \choose 2}$.

G complete \Leftrightarrow G connected and $E = \widetilde{E}$.

 $([x]_{\widetilde{E}}, E_x)$ with $E_x = \{\{y, z\} \in E \mid y, z \in [x]_{\widetilde{E}}\}$, is called a *component* of G. Every component of a graph G is connected. If $V \neq \emptyset$, then G is connected, iff $|V/\widetilde{E}| = 1$. E transitive \Leftrightarrow every component of G is complete.

2. The Chinese Rings (Le Baguenaudier, Меледа)

Chinese rings—jiu lian huan (trad., before 1500)

Modelling by state graphs

Chinese rings graph R^n $(n \in \mathbb{N}_0 \text{ rings})$ $(\omega^{(k)} := 10 \dots 0 \in [2]_0^k; k \in \mathbb{N}_0)$ $V(R^n) = [2]_0^n, E(R^n) = \left\{ \left\{ \underline{s} 0 \omega^{(r-1)}, \underline{s} 1 \omega^{(r-1)} \right\} \mid r \in [n] \right\}$ $R^n \cong P_{2^n} \quad \underbrace{\bullet}_{000 \quad 001 \quad 011 \quad 010 \quad 110 \quad 111 \quad 101 \quad 100}_{110 \quad 111 \quad 101 \quad 100} \quad n = 3$ $d(0^n, \omega^{(n)}) = \varepsilon(0^n) = \operatorname{diam}(R^n) = 2^n - 1 =: M_n$ (Mersenne sequence) For $\ell_n := d(0^n, 1^n)$ we have $\ell_n + \ell_{n-1} = M_n$ (Lichtenberg sequence, 1769) $\ell = 0, 1, 2, 5, 10, 21, 42, 85, \ldots = 0_2, 1_2, 10_2, 101_2, 1010_2, 10101_2, 101010_2, 101010_2, \ldots$ Algorithm. To get from 1^n to 0^n , make alternating moves of ring 1 and another ring, starting with ring 1, iff n is odd; in particular, $\ell_9 = 341$.

What is $d(s) := d(0^n, s)$ (the Gros weight) for general $s \in [2]_0^n$?

Sierpiński graphs with base $p \ge 2$ and exponent $n \in \mathbb{N}_0$: $V\left(S_p^n\right) = [p]_0^n$, $E\left(S_p^n\right) = \left\{ \left\{ \underline{s}ij^{d-1}, \underline{s}ji^{d-1} \right\} \mid \{i, j\} \in {\binom{[p]_0}{2}}, d \in [n] \right\}$

So $R^n \cong S_2^n$. $\gamma(R^n) = \lfloor \frac{1}{3} 2^n \rfloor$, based on the fundamental relation $M_n \mod 3 = n \mod 2$.

The inverse is given by the Gray code.

Starting in state 0^{∞} , the ring moved in step $k = 2^{r-1}(2\kappa - 1)$ is $g_k = r$; $\kappa \in \mathbb{N}$.

This is the *Gros sequence*

 $g = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, \dots$

It is the greedy (strongly) square-free sequence over \mathbb{N} .

The sequence of ups (1) and downs (0) of the rings is the *paper-folding* sequence $\varphi = 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, \dots$

Let $\overline{g} := g \mod 2$; then $1 - \overline{g}$ period doubling sequence, $\sum \overline{g}$ Thue-Morse sequence.

The 8 trigrams ba gua

3. The Tower of Hanoi

©A.M.Hinz, 1986

La Tour d'Hanoï (Édouard Lucas, 1883)

3.0. The P0-Task (perfect to perfect)

Legal distributions of discs from [n] on pegs from $[3]_0$ are coded by $s \in [3]_0^n$. The *P0-task* is to get from 0^n to 2^n (on a shortest possible path). **Proposition 0** The P0-task can be achieved in M_n moves.

Proof by induction. The statement is clearly true for n = 0. To transfer a tower of n + 1 discs from peg 0 to peg 2, displace the *n*-tower of smaller discs to peg 1 in M_n moves (by induction assumption), then disc n + 1 to peg 2 in 1 move and finally all other discs on top of it in another M_n moves. Altogether $2M_n + 1 = M_{n+1}$ moves have been performed.

Is this *recursive algorithm* optimal or was there a hidden assumption in the previous proof? Yes and Yes!

Why does disc n + 1 move *directly* to the goal peg?

Theorem The optimal solution for the P0-task is unique and takes M_n moves.

Proof by induction. The statement is clearly true for n = 0. Before the first move of disc n + 1 in any solution, a tower of n discs has to be transferred from the source peg to another one, which takes at least M_n moves by induction assumption. After the last move of disc n + 1 again an n-tower changes position from some peg to the goal peg, consuming another M_n individual disc moves. Since disc n + 1 has to move at least once, the solution needs at least M_{n+1} steps. Therefore, by Proposition 0, first and last move of disc n + 1 coincide, and uniqueness of the optimal solution follows from induction assumption as well.

Is there an *efficient algorithm* for the optimal solution? Is there a *human algorithm* for the optimal solution?

The optimal solution

Observation (Raoul Olive): disc 1 moves cyclically

Moreover, the disc moved in move number k is $g_k % \left({{{\mathbf{x}}_{k}}} \right)$

Hence, disc d moves for the first time in step $2^{d-1} \label{eq:eq:entropy}$

The only move of the largest disc

Call bottom of peg $i \ \mbox{``disc} \ n+1+i\mbox{''}$; then all ''discs'' on a peg are of alternating parity.

All this leads to *iterative algorithms*.

What happens, if we introduce a "disc 0"?

"Disc 0" acts like a "thimble" designating the *idle peg*

$$\longrightarrow \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \xleftarrow{1} \left(1 + (n \text{ even}) \right) \xleftarrow{0} \left(1 + (n \text{ odd}) \right)$$

idle peg automaton

yields the idle peg of move
$$k = \sum_{d=1}^n k_d \cdot 2^{d-1}$$
;

this, together with the *divine rule* defines the move completely.

Olive's sequence o: start in 0^{∞} and let the idle peg follow the sequence $(012)^{\infty}$. Then

$$o = 1, \overline{2}, 0, 1, 2, \overline{0}, 1, \overline{2}, 0, \overline{1}, 2, 0, 1, \ldots = (g_{\ell} \mod 2, \ell \mod 3),$$

where $(0,i) = \overline{i}$ and (1,i) = i.

The Olive sequence is square-free and automatic (Allouche & al., 1989ff).

parallel algorithm or spreadsheet solution

$d \setminus k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2
2	0	0	2	2	2	2	1	1	1	1	0	0	0	0	2	2
3	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2
4	0	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2

Another curiosity: The number of distinct distributions of discs on the intermediate peg during execution of the optimal solution for $n \in \mathbb{N}_0$ discs is F_{n+1} .

We can also solve the inverse problem. But can we trust the Brahmins?

La Tour d'Hanoï: . . . to 4 and beyond² Andreas M. Hinz

Ludwig-Maximilians-Universität München & Universa v Mariboru

CombinatoireS

École d'Été Paris, 2015–07–03

3.1. The P1-Task (regular to perfect) Does $s \in [3]_0^n$ lie on the optimal $1^n, 2^n$ -path?

Entering i in state j of the automaton yields $i \vartriangle j$ according to the

Cayley table

(Note that $i \triangle j = 3 - i - j$, if $i \neq j$.)

	0	1	2	
0	0	2	1	
1	2	1	0	
2	1	0	2	

For the P1-task $[3]_0^n \ni s \to j^n$, the P1 automaton gives — the disc to be moved in the optimal first move — the idle peg $s_1 \land \cdots \land s_n \land j$ in that move and

— the length $d(s, j^n)$ of the (only) optimal solution.

Every $s \in [3]_0^n$ is uniquely determined by the two values $d(s, i^n)$, $d(s, j^n)$, and $d(s, i^n) + d(s, j^n) + d(s, (i \land j)^n) = 2M_n$, if $i \neq j$. More challenging tasks: sorting gold and silver!

This corresponds to a P1-task $s \to 1^n$ with $s_d = 2(d \mod 2)$ for $d \in [n]$. Needs $\left\lfloor \frac{5}{7} 2^n \right\rfloor = 0, 1, 2, 5, 11, 22, 45, 91, 182, \dots$ moves.

So far, everything can be proved by induction.

But what, for instance, if we want to switch gold and silver towers?

This is a *P2-task* $[3]_0^n \ni s \to t \in [3]_0^n$ (with $t_d = 2(1 - (d \mod 2)))$).

Surprise: there may be two optimal solutions $(01 \rightarrow 10)$ and it might even be necessary to move the largest disc twice $(011 \rightarrow 100)!$

3.2. Hanoi Graphs and the P2-Task (regular to regular)

Metric properties: $d(0^n, 2^n) = \varepsilon(0^n) = diam(H_3^n) = M_n$.

On a shortest path the largest discs moves at most twice; there are up to two shortest paths differing by the number of LDMs.

(Hinz, 1989)
$$\Theta_{\pm} := \frac{1}{2}(5 \pm \sqrt{17})$$

 $\overline{\mathbf{d}}(H_3^n) = \frac{466}{885} 2^n - \frac{1}{3} + \frac{6}{59} \left(2 + \frac{3}{17}\sqrt{17}\right) \left(\frac{\Theta_+}{9}\right)^n - \frac{3}{5} \left(\frac{1}{3}\right)^n + \frac{6}{59} \left(2 - \frac{3}{17}\sqrt{17}\right) \left(\frac{\Theta_-}{9}\right)^n$

(Hinz and Schief, 1990) Average distance on the Sierpiński triangle

Floor decoration in San Clemente, Rome

W. Sierpinski, C. R. Acad. Sci. 1915–02–01 (présenté par E. Picard)

Hanoi graphs with base $p \ge 3$ and exponent $n \in \mathbb{N}_0$: $V\left(H_p^n\right) = [p]_0^n$, $E\left(H_p^n\right) = \left\{ \left\{ \underline{s}i\overline{s}, \underline{s}j\overline{s} \right\} \mid \{i, j\} \in {[p]_0 \choose 2}, \ d \in [n], \ \overline{s} \in ([p]_0 \setminus \{i, j\})^{d-1} \right\}$

For S_p^n : P2 automata by D. Romik (p = 3, 2006), A. M. Hinz and C. Holz auf der Heide (general p, 2014)

$$\begin{aligned} \mathrm{d}(s,j^n) &= \sum_{d=1}^n (s_d \neq j) \cdot 2^{d-1} & \text{unique solution} \\ \mathrm{d}(is,jt) &= \mathrm{d}(s,j^n) + 1 + \mathrm{d}(t,i^n) & \text{A, D; unique solution, 1 LDM} \\ \text{or} &= \mathrm{d}(s,k^n) + 1 + 2^n + \mathrm{d}(t,k^n) & \text{C, E; unique solution, 2 LDMs} \\ \text{or} & \text{B: 2 solutions} \end{aligned}$$

There may be up to p-1 LDMs (necessary) in $H_p^n!$ (022333 \rightarrow 300101 in H_4^6)

4. The Reve's Puzzle

Frame-Stewart numbers are defined as $FS_4^0 = 0, \ \forall n \in \mathbb{N}: \ FS_4^n = \min \{2FS_4^m + M_{n-m} \mid m \in [n]_0\}$

Theorem $\forall \nu \in \mathbb{N}_0, x \in [\nu + 1]_0 : FS_4^{\Delta_{\nu} + x} = (\nu - 1 + x)2^{\nu} + 1$

Conjecture (Frame and Stewart, 1941) $d(0^n, 3^n) = FS_4^n$ in H_4^n

Dunkel's "Lemma". After $(\nu + x) 2^{\nu-1}$ moves at most $\Delta_{\nu} + x$ discs have left peg 0.

(Korf and Felner, 2007) numerical confirmation of FSC for $n \leq 30$

Korf's Phenomenon: $ex(n) = \varepsilon(0^n) - d(0^n, 3^n)$, $EX(n) = diam(H_4^n) - d(0^n, 3^n)$

n	12	13	14	15	16	17	18	19	20	21	22
$d(0^n, 3^n)$	81	97	113	129	161	193	225	257	289	321	385
$\varepsilon(0^n)$	81	97	113	130	161	193	225	257	294	341	394
ex(n)	0	0	0	1	0	0	0	0	5	20	9
EX(n)	0	0	0	1	≥ 0	≥ 0	≥ 0	≥ 0	≥ 5	≥ 20	≥ 9

Conjecture (Korf and Felner, 2007) For any $n \ge 20$, ex(n) > 0.

Conjecture (Hinz et al., 2013) The function EX is (eventually strictly) monotone increasing.

$q\setminus \nu$	0	1	2	3	4	5	6	7	8	9	10
0	0	1	1	1	1	1	1	1	1	1	1
1	0	1	2	3	4	5	6	7	8	9	10
2	0	1	3	6	10	15	21	28	36	45	55
3	0	1	4	10	20	35	56	84	120	165	220
4	0	1	5	15	35	70	126	210	330	495	715
5	0	1	6	21	56	126	252	462	792	1287	2002
6	0	1	7	28	84	210	462	924	1716	3003	5005
7	0	1	8	36	120	330	792	1716	3432	6435	11440
8	0	1	9	45	165	495	1287	3003	6435	12870	24310
9	0	1	10	55	220	715	2002	5005	11440	24310	48620

The hypertetrahedral array $\Delta_{q,
u} = {q+
u-1 \choose q}$

Pascal's Arithmetical triangle

$q \setminus \nu$	0	1	2	3	4	5	6	7	8	9	10
0	1	1	1	1	1	1	1	1	1	1	1
1	-1	0	1	2	3	4	5	6	7	8	9
2	1	1	2	4	7	11	16	22	29	37	46
3	-1	0	2	6	13	24	40	62	91	128	174
4	1	1	3	9	22	46	86	148	239	367	541
5	-1	0	3	12	34	80	166	314	553	920	1461
6	1	1	4	16	50	130	296	610	1163	2083	3544
7	-1	0	4	20	70	200	496	1106	2269	4352	7896
8	1	1	5	25	95	295	791	1897	4166	8518	16414
9	-1	0	5	30	125	420	1211	3108	7274	15792	32206

The P-array $P_{q,\nu}$

 $2P_{q,\nu+1} = P_{q,\nu} + \Delta_{q,\nu+1}$

$q \setminus \nu$	0	1	2	3	4	5	6	7	8
0	0	1	1	1	1	1	1	1	1
1	0	1	3	7	15	31	63	127	255
2	0	1	5	17	49	129	321	769	1793
3	0	1	7	31	111	351	1023	2815	7423
4	0	1	9	49	209	769	2561	7937	23297
5	0	1	11	71	351	1471	5503	18943	61183
6	0	1	13	97	545	2561	10625	40193	141569
7	0	1	15	127	799	4159	18943	78079	297727

Dudeney's array $a_{q,\nu}$

$$a_{q,0} = 0, \ a_{0,\nu} = \Delta_{0,\nu}, \ a_{q+1,\nu+1} = 2a_{q+1,\nu} + a_{q,\nu+1}.$$

Dudeney's algorithm uses $\Delta_{h,\nu+}$

$$-1 = 1 + \sum_{q=1}^{h} \Delta_{q,\nu}$$

$$\implies d_{2+h}(0^{\Delta_{h,\nu}}, 1^{\Delta_{h,\nu}}) \le a_{h,\nu} = P_{h-1,\nu} \cdot 2^{\nu} + (-1)^h$$

Fundamental relations

$$a_{h,\nu} = \sum_{k=0}^{\Delta_{h,\nu}-1} 2^{\nabla_{h,k}} ,$$

where $\nabla_{h,k} = \max \{ \mu \in \mathbb{N}_0 \mid \Delta_{h,\mu} \leq k \}$ is the *hypertetrahedral root* of k, for which

$$\forall x \in [\Delta_{h-1,\nu+1}]_0: \nabla_{h,\Delta_{h,\nu}+x} = \nu.$$

$h \setminus n$	0	1	2	3	4	5	6	7	8	9
1	0	1	3	7	15	31	63	127	255	511
2	0	1	3	5	9	13	17	25	33	41
3	0	1	3	5	7	11	15	19	23	27
4	0	1	3	5	7	9	13	17	21	25

$$\forall x \le \Delta_{h-1,\nu+1} : FS_{h+2}^{\Delta_{h,\nu}+x} = a_{h,\nu} + x \cdot 2^{\nu}$$

Altogether we know

$$FS_{2+h}^n = \sum_{k=0}^{n-1} 2^{\nabla_{h,k}} =: \Phi_{h-1}(n), \ \overline{FS}_{2+h}^n = \frac{1}{2} \sum_{k=1}^n 2^{\nabla_{h,k}} =: \overline{\Phi}_{h-1}(n).$$

To prove the

Frame-Stewart Conjecture $d_p(0^n, 1^n) = FS_p^n$,

it suffices to show that

$$\forall t \in [h]^n : d_{2+h}(0^n, t) \ge \overline{\Phi}_{h-1}(n).$$

Note that for p = 3, i.e. h = 1, we have $t = 1^n$ and $\overline{\Phi}_0(n) = 2^n - 1$.

Thierry Bousch has published an attempt at p = 4, i.e. h = 2, in 2014.

http://www.tohbook.info

A. M. Hinz, C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014), 111–120.

S. Aumann, K. A. M. Götz, A. M. Hinz, C. Petr, The number of moves of the largest disc in shortest paths on Hanoi graphs, Electron. J. Combin. 21(4) (2014), #P4.38.

Bousch, T., La quatrième tour de Hanoï, Bull. Belg. Math. Soc. Simon Stevin 21(2014), 895-912.