La Tour d'Hanoï: from 2 to 3 . . . ${ }^{1}$

Andreas M. Hinz

Ludwig-Maximilians-Universität München \& Universa v Mariboru
CombinatoireS

École d'Été
Paris, 2015-06-30

0. Paris
1. Pairs
ordered pairs $(x, y) \in V \times V=: V^{2} ;\left|V^{2}\right|=|V|^{2}$
unordered pairs $\{x, y\} \in\binom{V}{2}$

[^0]$E \subset\binom{V}{2}$ is called an association (on V), $G=(V, E)$ is a (simple) graph
An association E is transitive, iff $\forall\{x, y, z\} \in\binom{V}{3}:\{x, z\},\{y, z\} \in E \Rightarrow\{x, y\} \in E$.
A transitive association is called an equivalence (on V).
x and y are equivalent $(x \approx y)$ if either $x=y$ or $\{x, y\} \in E$.
$[x]:=\{y \in V \mid x \approx y\}$ is the equiset (equivalence class) of x in V w.r.t. E.
Example 1. $V=\mathbb{Z}, E=\left\{\left.\{m, n\} \in\binom{\mathbb{Z}}{2} \right\rvert\, m \cdot n>0\right\}$; equisets $-\mathbb{N},\{0\}, \mathbb{N}$.
Example 2. Let $\widetilde{E}:=\left\{\left.\{x, y\} \in\binom{V}{2} \right\rvert\, \exists x, y-\right.$ walk in $\left.G\right\} \supset E ; \widetilde{E}$ is transitive.
$G=(V, E)$ is called complete, iff $E=\binom{V}{2}$; connected, iff $\widetilde{E}=\binom{V}{2}$.
$$
G \text { complete } \Leftrightarrow G \text { connected and } E=\widetilde{E} .
$$
$\left([x]_{\tilde{E}}, E_{x}\right)$ with $E_{x}=\left\{\{y, z\} \in E \mid y, z \in[x]_{\tilde{E}}\right\}$, is called a component of G.
Every component of a graph G is connected. If $V \neq \emptyset$, then G is connected, iff $|V / \widetilde{E}|=1$.
E transitive \Leftrightarrow every component of G is complete.

Chinese rings-jiu lian huan (trad., before 1500)
Modelling by state graphs
Chinese rings graph $R^{n}\left(n \in \mathbb{N}_{0}\right.$ rings) $\left(\omega^{(k)}:=10 \ldots 0 \in[2]_{0}^{k} ; k \in \mathbb{N}_{0}\right)$
$V\left(R^{n}\right)=[2]_{0}^{n}, E\left(R^{n}\right)=\left\{\left\{\underline{s} 0 \omega^{(r-1)}, \underline{s} 1 \omega^{(r-1)}\right\} \mid r \in[n]\right\}$
$R^{n} \cong P_{2^{n}} \quad \stackrel{\bullet}{000} 1001 \quad 011 \quad 0 \cdot 0$
$\mathrm{d}\left(0^{n}, \omega^{(n)}\right)=\varepsilon\left(0^{n}\right)=\operatorname{diam}\left(R^{n}\right)=2^{n}-1=: M_{n}$ (Mersenne sequence)

For $\ell_{n}:=\mathrm{d}\left(0^{n}, 1^{n}\right)$ we have $\ell_{n}+\ell_{n-1}=M_{n}$ (Lichtenberg sequence, 1769) $\ell=0,1,2,5,10,21,42,85, \ldots=0_{2}, 1_{2}, 10_{2}, 101_{2}, 1010_{2}, 10101_{2}, 101010_{2}, 1010101_{2}, \ldots$ Algorithm. To get from 1^{n} to 0^{n}, make alternating moves of ring 1 and another ring, starting with ring 1 , iff n is odd; in particular, $\ell_{9}=341$.
What is $\mathrm{d}(s):=\mathrm{d}\left(0^{n}, s\right)$ (the Gros weight) for general $s \in[2]_{0}^{n}$?

Sierpiński graphs with base $p \geq 2$ and exponent $n \in \mathbb{N}_{0}: \quad V\left(S_{p}^{n}\right)=[p]_{0}^{n}$,

$$
E\left(S_{p}^{n}\right)=\left\{\left\{\underline{s} i j^{d-1}, \underline{s} j i^{d-1}\right\} \left\lvert\,\{i, j\} \in\binom{\left[p p_{0}\right.}{2}\right., d \in[n]\right\}
$$

So $R^{n} \cong S_{2}^{n}$. $\gamma\left(R^{n}\right)=\left\lceil\frac{1}{3} 2^{n}\right\rceil$, based on the fundamental relation $M_{n} \bmod 3=n \bmod 2$.

The inverse is given by the Gray code.

Gray code automaton

$$
s_{r}=d_{r} \dot{\vee} d_{r-1}
$$

Starting in state 0^{∞}, the ring moved in step $k=2^{r-1}(2 \kappa-1)$ is $g_{k}=r ; \kappa \in \mathbb{N}$.
This is the Gros sequence

$$
g=1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1, \ldots
$$

It is the greedy (strongly) square-free sequence over \mathbb{N}.

The sequence of ups (1) and downs (0) of the rings is the paper-folding sequence $\varphi=1,1,0,1,1,0,0,1,1,1,0,0,1,0,0, \ldots$.

Let $\bar{g}:=g \bmod 2$; then $1-\bar{g}$ period doubling sequence, $\sum \bar{g}$ Thue-Morse sequence.

The 8 trigrams ba gua

Fu Xi

'ill
3. The Tower of Hanoi

(C)A.M.Hinz, 1986

La Tour d'Hanoï (Édouard Lucas, 1883)

3.0. The P0-Task (perfect to perfect)

Legal distributions of discs from $[n]$ on pegs from $[3]_{0}$ are coded by $s \in[3]_{0}^{n}$. The $P 0$-task is to get from 0^{n} to 2^{n} (on a shortest possible path). Proposition 0 The PO-task can be achieved in M_{n} moves.

Proof by induction. The statement is clearly true for $n=0$. To transfer a tower of $n+1$ discs from peg 0 to peg 2, displace the n-tower of smaller discs to peg 1 in M_{n} moves (by induction assumption), then disc $n+1$ to peg 2 in 1 move and finally all other discs on top of it in another M_{n} moves. Altogether $2 M_{n}+1=M_{n+1}$ moves have been performed.

Is this recursive algorithm optimal or was there a hidden assumption in the previous proof? Yes and Yes!

Why does disc $n+1$ move directly to the goal peg?

Theorem The optimal solution for the P0-task is unique and takes M_{n}

moves.

Proof by induction. The statement is clearly true for $n=0$. Before the first move of disc $n+1$ in any solution, a tower of n discs has to be transferred from the source peg to another one, which takes at least M_{n} moves by induction assumption. After the last move of disc $n+1$ again an n-tower changes position from some peg to the goal peg, consuming another M_{n} individual disc moves. Since disc $n+1$ has to move at least once, the solution needs at least M_{n+1} steps. Therefore, by Proposition 0 , first and last move of disc $n+1$ coincide, and uniqueness of the optimal solution follows from induction assumption as well.

Is there an efficient algorithm for the optimal solution?
Is there a human algorithm for the optimal solution?

The optimal solution
Observation (Raoul Olive): disc 1 moves cyclically
Moreover, the disc moved in move number k is g_{k}

Hence, disc d moves for the first time in step 2^{d-1}

The only move of the largest disc

Call bottom of peg i "disc $n+1+i$ ";
then all "discs" on a peg are of alternating parity.

All this leads to iterative algorithms.

$$
n=4
$$

What happens, if we introduce a "disc 0 "?
"Disc 0" acts like a "thimble" designating the idle peg

idle peg automaton
yields the idle peg of move $k=\sum_{d=1}^{n} k_{d} \cdot 2^{d-1}$;
this, together with the divine rule defines the move completely.

Olive's sequence o : start in 0^{∞} and let the idle peg follow the sequence $(012)^{\infty}$. Then

$$
o=1, \overline{2}, 0,1,2, \overline{0}, 1, \overline{2}, 0, \overline{1}, 2,0,1, \ldots=\left(g_{\ell} \bmod 2, \ell \bmod 3\right),
$$

where $(0, i)=\bar{i}$ and $(1, i)=i$.
The Olive sequence is square-free and automatic (Allouche \& al., 1989ff).
parallel algorithm or spreadsheet solution

$d \backslash k$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$
2	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$
3	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$							
4	$\mathbf{0}$	$\mathbf{2}$														

Another curiosity: The number of distinct distributions of discs on the intermediate peg during execution of the optimal solution for $n \in \mathbb{N}_{0}$ discs is F_{n+1}.

We can also solve the inverse problem. But can we trust the Brahmins?

La Tour d'Hanoï: . . . to 4 and beyond ${ }^{2}$

Andreas M. Hinz

Ludwig-Maximilians-Universität München \& Universa v Mariboru

> CombinatoireS
> École d'Été
> Paris, 2015-07-03

[^1]
3.1. The P1-Task (regular to perfect)

Does $s \in[3]_{0}^{n}$ lie on the optimal $1^{n}, 2^{n}$-path?
Enter s_{n}, \ldots, s_{1} into P1 automaton, iff state changes on every input,

Entering i in state j of the automaton yields $i \Delta j$ according to the
Cayley table (Note that $i \Delta j=3-i-j$, if $i \neq j$.)

Δ	0	1	2
0	0	2	1
1	2	1	0
2	1	0	2

For the P1-task $[3]_{0}^{n} \ni s \rightarrow j^{n}$, the P1 automaton gives

- the disc to be moved in the optimal first move
— the idle peg $s_{1} \Delta \cdots \Delta s_{n} \Delta j$ in that move and
- the length $\mathrm{d}\left(s, j^{n}\right)$ of the (only) optimal solution.

Every $s \in[3]_{0}^{n}$ is uniquely determined by the two values $\mathrm{d}\left(s, i^{n}\right), \mathrm{d}\left(s, j^{n}\right)$, and $\mathrm{d}\left(s, i^{n}\right)+\mathrm{d}\left(s, j^{n}\right)+\mathrm{d}\left(s,(i \Delta j)^{n}\right)=2 M_{n}$, if $i \neq j$.

More challenging tasks: sorting gold and silver!
This corresponds to a P1-task $s \rightarrow 1^{n}$ with $s_{d}=2(d \bmod 2)$ for $d \in[n]$.
Needs $\left\lfloor\frac{5}{7} 2^{n}\right\rfloor=0,1,2,5,11,22,45,91,182, \ldots$ moves.

So far, everything can be proved by induction.
But what, for instance, if we want to switch gold and silver towers?
This is a P2-task $[3]_{0}^{n} \ni s \rightarrow t \in[3]_{0}^{n}\left(\right.$ with $\left.t_{d}=2(1-(d \bmod 2))\right)$.
Surprise: there may be two optimal solutions $(01 \rightarrow 10)$ and it might even be necessary to move the largest disc twice $(011 \rightarrow 100)$!

3.2. Hanoi Graphs and the P2-Task (regular to regular)

Hanoi graphs H_{3}^{n}

Metric properties: $\mathrm{d}\left(0^{n}, 2^{n}\right)=\varepsilon\left(0^{n}\right)=\operatorname{diam}\left(H_{3}^{n}\right)=M_{n}$.
On a shortest path the largest discs moves at most twice; there are up to two shortest paths differing by the number of LDMs.
(Hinz, 1989)

$$
\Theta_{ \pm}:=\frac{1}{2}(5 \pm \sqrt{17})
$$

$\overline{\mathrm{d}}\left(H_{3}^{n}\right)=\frac{466}{885} 2^{n}-\frac{1}{3}+\frac{6}{59}\left(2+\frac{3}{17} \sqrt{17}\right)\left(\frac{\Theta_{+}}{9}\right)^{n}-\frac{3}{5}\left(\frac{1}{3}\right)^{n}+\frac{6}{59}\left(2-\frac{3}{17} \sqrt{17}\right)\left(\frac{\Theta_{-}}{9}\right)^{n}$
(Hinz and Schief, 1990) Average distance on the Sierpiński triangle

(c)A.M.Hinz, 2001

Floor decoration in San Clemente, Rome
W. Sierpinski, C. R. Acad. Sci. 1915-02-01 (présenté par E. Picard)

Hanoi graphs with base $p \geq 3$ and exponent $n \in \mathbb{N}_{0}: \quad V\left(H_{p}^{n}\right)=[p]_{0}^{n}$,
$E\left(H_{p}^{n}\right)=\left\{\{\underline{s} i \bar{s}, \underline{s} j \bar{s}\} \left\lvert\,\{i, j\} \in\binom{[p]_{0}}{2}\right., d \in[n], \bar{s} \in\left([p]_{0} \backslash\{i, j\}\right)^{d-1}\right\}$
For S_{p}^{n} : P2 automata by D. Romik ($p=3,2006$),
A. M. Hinz and C. Holz auf der Heide (general p, 2014)

$$
\begin{array}{rr}
\mathrm{d}\left(s, j^{n}\right)=\sum_{d=1}^{n}\left(s_{d} \neq j\right) \cdot 2^{d-1} & \text { unique solution } \\
\mathrm{d}(i s, j t)=\mathrm{d}\left(s, j^{n}\right)+1+\mathrm{d}\left(t, i^{n}\right) & \text { A, D; unique solution, 1 LDM } \\
\text { or } \quad=\mathrm{d}\left(s, k^{n}\right)+1+2^{n}+\mathrm{d}\left(t, k^{n}\right) & \text { C, E; unique solution, } 2 \text { LDMs } \\
\text { or } & \text { B; } 2 \text { solutions }
\end{array}
$$

or
$\ln S_{p}^{n}: \mathrm{d}\left(0^{n},(p-1)^{n}\right)=\varepsilon\left(0^{n}\right)=\operatorname{diam}\left(S_{p}^{n}\right)=M_{n}$
But: $H_{p}^{n} \not \approx S_{p}^{n}$ for $p>3_{10}$ and $n>1\left(H_{p}^{1} \cong K_{p} \cong S_{p}^{1}\right)$

There may be up to $p-1$ LDMs (necessary) in $H_{p}^{n!}\left(022333 \rightarrow 300101\right.$ in $\left.H_{4}^{6}\right)$

4. The Reve's Puzzle

H_{p}^{n} has more complex metric properties: for $n \in \mathbb{N}$ we know

$$
2 n-1 \leq \mathrm{d}\left(0^{n},(p-1)^{n}\right) \leq \varepsilon\left(0^{n}\right) \leq \operatorname{diam}\left(H_{p}^{n}\right) \leq 2^{n}-1
$$

Case $p=4: \quad$ The Reve's Puzzle

Hanoi graph H_{4}^{4}
Frame-Stewart numbers are defined as

$$
F S_{4}^{0}=0, \forall n \in \mathbb{N}: F S_{4}^{n}=\min \left\{2 F S_{4}^{m}+M_{n-m} \mid m \in[n]_{0}\right\}
$$

Theorem $\forall \nu \in \mathbb{N}_{0}, x \in[\nu+1]_{0}: F S_{4}^{\Delta_{\nu}+x}=(\nu-1+x) 2^{\nu}+1$

Conjecture (Frame and Stewart, 1941) $\mathrm{d}\left(0^{n}, 3^{n}\right)=F S_{4}^{n}$ in H_{4}^{n}
Dunkel's "Lemma". After $(\nu+x) 2^{\nu-1}$ moves at most $\Delta_{\nu}+x$ discs have left peg 0 .
(Korf and Felner, 2007) numerical confirmation of FSC for $n \leq 30$
Korf's Phenomenon: $\operatorname{ex}(n)=\varepsilon\left(0^{n}\right)-\mathrm{d}\left(0^{n}, 3^{n}\right), E X(n)=\operatorname{diam}\left(H_{4}^{n}\right)-\mathrm{d}\left(0^{n}, 3^{n}\right)$

n	12	13	14	15	16	17	18	19	20	21	22
$\mathrm{~d}\left(0^{n}, 3^{n}\right)$	81	97	113	129	161	193	225	257	289	321	385
$\varepsilon\left(0^{n}\right)$	81	97	113	$\mathbf{1 3 0}$	161	193	225	257	$\mathbf{2 9 4}$	$\mathbf{3 4 1}$	$\mathbf{3 9 4}$
$e x(n)$	0	0	0	$\mathbf{1}$	0	0	0	0	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{9}$
$E X(n)$	0	0	0	1	≥ 0	≥ 0	≥ 0	≥ 0	≥ 5	≥ 20	≥ 9

Conjecture (Korf and Felner, 2007) For any $n \geq 20$, $e x(n)>0$.
Conjecture (Hinz et al., 2013) The function $E X$ is (eventually strictly) monotone increasing.

$q \backslash \nu$	0	1	2	3	4	5	6	7	8	9	10
0	0	1	1	1	1	1	1	1	1	1	1
1	0	1	2	3	4	5	6	7	8	9	10
2	0	1	3	6	10	15	21	28	36	45	55
3	0	1	4	10	20	35	56	84	120	165	220
4	0	1	5	15	35	70	126	210	330	495	715
5	0	1	6	21	56	126	252	462	792	1287	2002
6	0	1	7	28	84	210	462	924	1716	3003	5005
7	0	1	8	36	120	330	792	1716	3432	6435	11440
8	0	1	9	45	165	495	1287	3003	6435	12870	24310
9	0	1	10	55	220	715	2002	5005	11440	24310	48620

The hypertetrahedral array $\Delta_{q, \nu}=\binom{q+\nu-1}{q}$
Pascal's Arithmetical triangle

$q \backslash \nu$	0	1	2	3	4	5	6	7	8	9	10
0	1	1	1	1	1	1	1	1	1	1	1
1	-1	0	1	2	3	4	5	6	7	8	9
2	1	1	2	4	7	11	16	22	29	37	46
3	-1	0	2	6	13	24	40	62	91	128	174
4	1	1	3	9	22	46	86	148	239	367	541
5	-1	0	3	12	34	80	166	314	553	920	1461
6	1	1	4	16	50	130	296	610	1163	2083	3544
7	-1	0	4	20	70	200	496	1106	2269	4352	7896
8	1	1	5	25	95	295	791	1897	4166	8518	16414
9	-1	0	5	30	125	420	1211	3108	7274	15792	32206

The P-array $P_{q, \nu}$

$$
2 P_{q, \nu+1}=P_{q, \nu}+\Delta_{q, \nu+1}
$$

$q \backslash \nu$	0	1	2	3	4	5	6	7	8
0	0	1	1	1	1	1	1	1	1
1	0	1	3	7	15	31	63	127	255
2	0	1	5	17	49	129	321	769	1793
3	0	1	7	31	111	351	1023	2815	7423
4	0	1	9	49	209	769	2561	7937	23297
5	0	1	11	71	351	1471	5503	18943	61183
6	0	1	13	97	545	2561	10625	40193	141569
7	0	1	15	127	799	4159	18943	78079	297727

Dudeney's array $a_{q, \nu}$

$$
a_{q, 0}=0, a_{0, \nu}=\Delta_{0, \nu}, a_{q+1, \nu+1}=2 a_{q+1, \nu}+a_{q, \nu+1}
$$

Dudeney's algorithm uses $\quad \Delta_{h, \nu+1}=1+\sum_{q=1}^{h} \Delta_{q, \nu}$.

$$
\Rightarrow \mathrm{d}_{2+h}\left(0^{\Delta_{h, \nu}}, 1^{\Delta_{h, \nu}}\right) \leq a_{h, \nu}=P_{h-1, \nu} \cdot 2^{\nu}+(-1)^{h}
$$

Fundamental relations

$$
a_{h, \nu}=\sum_{k=0}^{\Delta_{h, \nu}-1} 2^{\nabla_{h, k}}
$$

where $\nabla_{h, k}=\max \left\{\mu \in \mathbb{N}_{0} \mid \Delta_{h, \mu} \leq k\right\}$ is the hypertetrahedral root of k, for which

$$
\forall x \in\left[\Delta_{h-1, \nu+1}\right]_{0}: \quad \nabla_{h, \Delta_{h, \nu}+x}=\nu
$$

$$
\begin{aligned}
& \begin{array}{|c|cccccccccc}
\hline h \backslash n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1 & 0 & 1 & 3 & 7 & 15 & 31 & 63 & 127 & 255 & 511 \\
2 & 0 & 1 & 3 & 5 & 9 & 13 & 17 & 25 & 33 & 41 \\
3 & 0 & 1 & 3 & 5 & 7 & 11 & 15 & 19 & 23 & 27 \\
4 & 0 & 1 & 3 & 5 & 7 & 9 & 13 & 17 & 21 & 25 \\
\forall x \leq \Delta_{h-1, \nu+1}: & F S_{h+2}^{\Delta_{h, \nu}+x}=a_{h, \nu}+x \cdot 2^{\nu}
\end{array} \\
&
\end{aligned}
$$

Altogether we know

$$
F S_{2+h}^{n}=\sum_{k=0}^{n-1} 2^{\nabla_{h, k}}=: \Phi_{h-1}(n), \overline{F S}_{2+h}^{n}=\frac{1}{2} \sum_{k=1}^{n} 2^{\nabla_{h, k}}=: \bar{\Phi}_{h-1}(n)
$$

To prove the
Frame-Stewart Conjecture

$$
\mathrm{d}_{p}\left(0^{n}, 1^{n}\right)=F S_{p}^{n}
$$

it suffices to show that

$$
\forall t \in[h]^{n}: \mathrm{d}_{2+h}\left(0^{n}, t\right) \geq \bar{\Phi}_{h-1}(n)
$$

Note that for $p=3$, i.e. $h=1$, we have $t=1^{n}$ and $\bar{\Phi}_{0}(n)=2^{n}-1$.

Thierry Bousch has published an attempt at $p=4$, i.e. $h=2$, in 2014.

Further reading:

http://www.tohbook.info

A. M. Hinz, C. Holz auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs, Discrete Appl. Math. 177 (2014), 111-120.
S. Aumann, K. A. M. Götz, A. M. Hinz, C. Petr, The number of moves of the largest disc in shortest paths on Hanoi graphs, Electron. J. Combin. 21(4) (2014), \#P4.38.

Bousch, T., La quatrième tour de Hanoï, Bull. Belg. Math. Soc. Simon Stevin 21(2014), 895-912.

[^0]: ${ }^{1}$ (C)A.M.Hinz 2015

[^1]: ²Ⓐ.M.Hinz 2015

